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The Cognitive Science of Deduction

Philip N . Johnson-Laird and Ruth M . J. Byrne

The late Lord Adrian, the distinguished physiologist, once remarked
that if you want to understand how the mind works then you had
better first ask what it is doing. This distinction has become familiar in
cognitive science as one that Marr (1982) drew between a theory at
the "computational level" and a theory at the "algorithmic level." A
theory at the computational level characterizes what is being com-
puted, why it is being computed, and what constraints may assist the
process. Such a theory, to borrow from Chomsky (1965), is an account
of human competence. And, as he emphasizes, it should also explain
how that competence is acquired. A theory at the algorithmic level
specifies how the computation is carried out, and ideally it should be
precise enough for a computer program to simulate the process. The
algorithmic theory, to borrow again from Chomsky, should explain
the characteristics of human performance- where it breaks down and
leads to error, where it runs smoothly, and how it is integrated with
other mental abilities.

We have two goals in this chapter. Our first goal is to charac-
terize deduction at the computational level. Marr criticized researchers
for trying to erect theories about mental processes without having
stopped to think about what the processes were supposed to com-
pute. The same criticism can be levelled against many accounts of
deduction, and so we shall take pains to think about its function:
what the mind computes, what purpose is served, and what con-
straints there are on the process. Our second goal is to examine existing
algorithmic theories. Here, experts in several domains of enquiry
have something to say. Linguists have considered the logical form
of sentences in natural language. Computer scientists have devised
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programs that make deductions , and , like philosophers , they have

confronted discrepancies between everyday inference and formal

logic . Psychologists have proposed algorithmic theories based on their

experimental investigations . We will review work from these dis -

ciplines in order to establish a preliminary account of deduction - to

show what it is , and to outline theories of how it might be carried out

by the mind .

Deduction : A Theory at the Computational Level

What happens when people make a deduction ? The short answer is

that they start with some information - perceptual observations ,

memories , statements , beliefs , or imagined states of affairs - and pro -

duce a novel conclusion that follows from them . Typically , they argue

from some initial propositions to a single conclusion , though some -

times merely from one proposition to another . In many practical

inferences , their starting point is a perceived state of affairs and their

conclusion is a course of action . Their aim is to arrive at a valid con -

clusion , which is bound to be true given that their starting point is

true .

One long - standing controversy concerns the extent to which

people are logical . Some say that logical error is impossible : deduction

depends on a set of universal principles applying to any content , and

everyone exercises these principles infallibly . This idea seems so con -

trary to common sense that , as you might suspect , it has been advo -

cated by philosophers ( and psychologists ) . What seems to be an

invalid inference is nothing more than a valid inference from other

premises ( see Spinoza , 1677 ; Kant , 1800 ) . In recent years , Henle

( 1962 ) has defended a similar view . Mistakes in reasoning , she claims ,

occur because people forget the premises , re - interpret them , or import

extraneous material . " I have never found errors , " she asserts , " which

could unambiguously be attributed to faulty reasoning " ( Henle ,

1978 ) . In all such cases , the philosopher L . J . Cohen ( 1981 ) has con -

curred , there is some malfunction of an information - processing mech -

anism . The underlying competence cannot be at fault . This doctrine

leads naturally to the view that the mind is furnished with an inborn

logic (Leibniz , 1765 ; Boole , 1854 ) . These authors , impressed by the
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human invention of logic and mathematics , argue that people must

think rationally . The laws of thought are the laws of logic .

Psychologism is a related nineteenth century view . John Stuart

Mill ( 1843 ) believed that logic is a generalization of those inferences

that people judge to be valid . Frege ( 1884 ) attacked this idea : logic

may ultimately depend on the human mind for its discovery , but it

is not a subjective matter ; it concerns objective relations between

proposItIons .

Other commentators take a much darker view about logical

competence . Indeed , when one contemplates the follies and foibles of

humanity , it seems hard to disagree with Dostoyevsky , Nietzsche ,

Freud , and those who have stressed the irrationality of the human

mind . Yet this view is reconcilable with logical competence . Human

beings may desire the impossible , or behave in ways that do not

optimally serve their best interests . It does not follow that they are

incapable of rational thought , but merely that their behaviour is not

invariably guided by it .

Some psychologists have proposed theories of reasoning that

render people inherently irrational ( e . g . Erickson , 1974 ; Revlis , 1975 ;

Evans , 1977 ) . They may draw a valid conclusion , but their thinking is

not properly rational because it never makes a full examination of the

consequences of premises . The authors of these theories , however ,

provide no separate account of deduction at the computational level ,

and so they might repudiate any attempt to ally them with Dosto -

yevsky , Nietzsche , and Freud .

Our view of logical competence is that people are rational in

principle , but fallible in practice . They are able to make valid deduc -

tions , and moreover they sometimes know that they have made a valid

deduction . They also make invalid deductions in certain circum -

stances . Of course , theorists can explain away these errors as a result

of misunderstanding the premises or forgetting them . The problem

with this manoeuvre is that it can be pushed to the point where no

possible observation could refute it . People not only make logical

mistakes , they are even prepared to concede that they have done so

( see e . g . Wason and Johnson - Laird , 1972 ; Evans , 1982 ) . These meta -

logical intuitions are important because they prepare the way for the

invention of self - conscious methods for checking validity . Thus , the

development of logic as an intellectual discipline requires logicians to
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be capable of sound pre - theoretical intuitions . Yet , logic would hardly

have been invented if there were never occasions where people were
uncertain about the status of an inference . Individuals do sometimes

formulate their own principles of reasoning, and they also refer to
deductions in a meta- logical way. They say, for example: " It seems to
follow that Arthur is in Edinburgh , but he isn't , and so I must have
argued wrongly ." These phenomena merit study like other forms of
meta - cognition (see e.g. Flavell , 1979 ; Brown , 1987 ) . Once the meta -

cognitive step is made, it becomes possible to reason at the meta-meta-
level, and so on to an arbitrary degree. Thus, cognitive psychologists
and devotees of logical puzzles (e.g. Smullyan, 1978; Dewdney , 1989)
can in turn make inferences about meta - cognition . A psychological

theory of deduction therefore needs to accommodate deductive

competence, errors in performance, and meta- logical intuitions (cf.
Simon , 1982 ; Johnson - Laird , 1983 ; Rips , 1989 ) .

Several ways exist to characterize deductive competence at the

computational level . Many theorists - from Boole (1847 ) to Mac -

namara (1986)- have supposed that logic itself is the best medium .
Others, however , have argued that logic and thought differ . Logic is
monotonic, i .e. if a conclusion follows from some premises , then no

subsequent premise can invalidate it . Further premises lead mono -

tonically to further conclusions, and nothing ever subtracts from
them. Thought in daily life appears not to have this property . Given
the premises :

Alicia has a bacterial infection .

If a patient has a bacterial infection , then the preferred treatment for

the patient is penicillin .

it follows validly :

Therefore , the preferred treatment for Alicia is penicillin .

But , if it is the case that :

Alicia is allergic to penicillin .

then common - sense dictates that the conclusion should be withdrawn .

But it still follows validly in logic . This problem suggests that some
inferences in daily life are " non - monotonic " rather than logically valid ,

e.g. their conclusions can be withdrawn in the light of subsequent
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information . There have even been attempts to develop formal sys-
tems of reasoning that are non-monotonic (see e.g. McDermott and
Doyle , 1980). We will show later in the book that they are unneces-
sary. Nevertheless, logic cannot tell the whole story about deductive
competence.

A theory at the computational level must specify what is com-
puted , and so it must account for what deductions people actually
make. Any set of premises yields an infinite number of valid con-
clusions. Most of them are banal. Given the

Ann is clever.
Snow is white .

the following conclusions are all valid :

Ann is clever and snow is white .

Snow is white and Ann is clever and snow is white .

They must be true given that the premises are true . Yet no sane indi -

vidual , apart from a logician , would dream of drawing them . Hence ,

when reasoners make a deduction in daily life , they must be guided

by more than logic . The evidence suggests that at least three extra -

logical constraints govern their conclusions .

The first constraint is not to throw semantic information away .

The concept of semantic information , which can be traced back to

medieval philosophy , depends on the proportion of possible states of

affairs that an assertion rules out as false ( see Bar - Hillel and Carnap ,

1964 ; johnson - Laird , 1983 ) . Thus , a conjunction , such as :

Joe is at home and Mary is at her office .

conveys more semantic information ( i . e . rules out more states of

affairs ) than only one of its constituents :

Joe is at home .

which , in turn , conveys more semantic information than the inclusive

disjunction :

Joe is at home or Mary is at her office , or both .

A valid deduction cannot increase semantic information , but it can

decrease it . One datum in support of the constraint is that valid

deductions that do decrease semantic information , such as :
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Joe is at home .

Therefore , Joe is at home or Mary is at her office , or both .

seem odd or even improper (see Rips , 1983 ) .

A second constraint is that conclusions should be more parsimo -

nious than premises . The following argument violates this constraint :

Ann is clever .

Snow is white .

Therefore , Ann is clever and snow is white .

In fact , logically untutored individuals declare that there is no valid

conclusion from these premises . A special case of parsimony is not to

draw a conclusion that asserts something that has just been asserted.

Hence , given the premises :

If J ames is at school then Agnes is at work .

James is at school .

the conclusion :

J ames is at school and Agnes is at work .

is valid , but violates this principle , because it repeats the categorical

premise . This information can be taken for granted and , as Grice

(1975 ) argued , there is no need to state the obvious . The develop -

ment of procedures for drawing parsimonious conclusions is a chal -

lenging technical problem in logic .

A third constraint is that a conclusion should , if possible , assert

something new , i .e., something that was not explicitly stated in the

premises . Given the premise :

Mark is over six feet tall and Karl is taller than him .

the conclusion :

Karl is taller than Mark , who is over six feet tall .

is valid but it violates this constraint because it assert nothing new . In

fact , ordinary reasoners spontaneously draw conclusions that establish

relations that are not explicit in the premises .
When there is no valid conclusion that meets the three con -

straints , then logically naive individuals say, " nothing follows " (see
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e . g . Johnson - Laird and Bara , 1984 ) . Logically speaking , the response

is wrong . There are always conclusions that follow from any prem -

ises . The point is that there is no valid conclusions that meets the

three constraints . We do not claim that people are aware of the con -

straints or that they are mentally represented in any way . They may

play no direct part in the process of deduction , which for quite in -

dependent reasons yields deductions that conform to them ( Johnson -

Laird , 1983 , Ch . 3 ) . In summary , our theory of deductive competence

posits rationality , an awareness of rationality , and a set of constraints

on the conclusions that people draw for themselves . To deduce is to

maintain semantic information , to simplify , and to reach a new conclusion .

Formal Rules : A Theory at the Algorithmic Level

Three main classes of theory about the process of deduction have

been proposed by cognitive scientists :

1 . Foffilal rules of inference .

2 . Content - specific rules of inference .

3 . Semantic procedures that search for interpretations (or mental models ) of

the premises that are counterexamples to conclusions .

Fonnal theories have long been dominant . Theorists originally

assumed without question that there is a mental logic containing

formal rules of inference , such as the rule for modus ponens , which

are used to derive conclusions . The first psychologist to emphasize

the role of logic was the late Jean Piaget ( see e .g . Piaget , 1953 ) . He

argued that children internalize their own actions and reflect on

them . This process ultimately yields a set of " formal operations , "

which children are supposed to develop by their early teens . lnhelder

and Piaget ( 1958 , p . 305 ) are unequivocal about the nature of formal

operations . They write :

No further operations need be introduced since these operations correspond

to the calculus inherent to the algebra of propositional logic . In short , rea -

soning is nothing more than the propositional calculus itself

There are grounds for rejecting this account : we have already

demonstrated that deductive competence must depend on more than

pure logic in order to rule out banal , though valid , conclusions .
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Moreover , Piaget ' s logic was idiosyncratic ( see Parsons , 1960 ; Ennis ,

1975 ; Braine and Rumain , 1983 ) , and he failed to describe his theory

in sufficient detail for it to be modelled in a computer program . He

had a genius for asking the right questions and for inventing experi -

ments to answer them , but the vagueness of his theory masked its

inadequacy perhaps even from Piaget himself . The effort to under -

stand it is so great that readers often have no energy left to detect its

flaws .

Logical Form in Linguistics

A more orthodox guide to logical analysis can be found in linguis -

tics . Many linguists have proposed analyses of the logical form of

sentences , and often presupposed the existence of fonnal rules of

inference that enable deductions to be derived from them . Such

analyses were originally inspired by transformational grammar ( see

e . g . Leech , 1969 ; Seuren , 1969 ; Johnson - Laird , 1970 ; Lakoff , 1970 ;

Keenan , 1971 ; Harman , 1972 ; Jackendoff , 1972 ) . What these accounts

had in common is the notion that English quantifiers conform to the

behaviour of logical quantifiers only indirectly . As in logic , a universal

quantifier within the scope of a negation :

Not all of his films are admired .

is equivalent to an existential quantifier outside the scope of negation :

Some of his films are not admired .

But , unlike logic , natural language has no clear - cut devices for

indicating scope . A sentence , such as :

Everybody is loved by somebody .

has two different interpretations depending on the relative scopes of

the two quantifiers . It can mean :

Everybody is loved by somebody or other .

which we can paraphrase in " Loglish " ( the language that resembles

the predicate calculus ) as :

For any x , there is some y , such that if x is a person then y is a person ,

and x is loved by y .
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It can also mean :

There is somebody whom everybody is loved by .

(There is some y , for any x , such that y is a person and if x is a person ,

then x is loved by y .)

Often , the order of the quantifiers in a sentence corresponds to their

relative scopes, but sometimes it does not , e.g.:

No - one likes some politicians .

(For some y , such that y is a politician , no x is a person and x likes y .)

where the first quantifier in the sentence is within the scope of the
second .

Theories of logical form have more recently emerged within

many different linguistic frameworks , including Chomsky 's (1981 )

and binding " theory , Montague grammar"government (Cooper ,
1983), and Kamp 's (1981) theory of discourse representations. The
Chomskyan theory postulates a separate mental representation of
logical form (LF), which makes explicit such matters as the scope of
the quantifiers, and which is transformationally derived from a rep-
resentation of the superficial structure of the sentence (S-structure).
The sentence, "Everybody is loved by somebody," has two distinct
logical forms analogous to those above. The first corresponds closely
to the superficial order of the quantifiers, and the second is derived by
a transformation that moves the existential quantifier , "somebody," to
the front - akin to the sentence:

Somebody, everybody is loved by .

This conception of logical form is motivated by linguistic considera-
tions (see Chomsky , 1981; Hornstein , 1984; May , 1985). Its existence
as a level of syntactic representation, however , is not incontrovertible .
The phenomena that it accounts for might be explicable, as Chomsky
has suggested (personal communication , 1989), by enriching the
representation of the superficial structure of sentences.

Logical form is, of course, a necessity for any theory of deduc-
tion that depends on formal rules of inference. Kempson (1988) argues
that the mind 's inferential machinery is formal , and that logical form
is therefore the interface between grammar and cognition . Its struc-

tures correspond to those of the deductive system, but , contrary to
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Chomskyan theory , she claims that it is not part of grammar , because

general knowledge can playa role in determining the relations it

represents . For example , the natural interpretation of the sentence :

Everyone got into a taxi and chatted to the driver .

is that each individual chatted to the driver of his or her taxi . This

interpretation , however , depends on general knowledge , and so log -

ical form is not purely a matter of grammar . Kempson links it to the

psychological theory of deduction advocated by Sperber and Wilson

(1986 ) . This theory depends on formal rules of inference , and its
authors have sketched some of them within the framework of a

" natural deduction " system .

One linguist , Cooper (1983 ), treats scope as a semantic matter ,

i .e. within the semantic component of an analysis based on Montague

grammar , which is an application of model - theoretic semantics to

language in general . A different model - theoretic approach , " situation

semantics ," is even hostile to the whole notion of reasoning as the

formal manipulation offormal representations (Barwise , 1989 ; Barwise

and Etchemendy , 1989a ,b) .

Formal Logic in Artificial Intelligence

Many researchers in artificial intelligence have argued that the predi -

cate calculus is an ideal language for representing knowledge (e.g.

Hayes , 1977 ) . A major discovery of this century , however , is that

there cannot be a full decision procedure for the predicate calculus .

In theory , a proof for any valid argument can always be found , but

no procedure can be guaranteed to demonstrate that an argument

is invalid . The procedure may , in effect , become lost in the space

of possible derivations . Hence , as it grinds away , there is no way of

knowing if , and when , it will stop . One palliative is to try to mini -

mize the search problem for valid deductions by reducing the number

of formal rules of inference . In fact , one needs only a single rule to

make any deduction , the so- called " resolution rule " (Robinson ,

1965 ) :

A or B , or both

C or not - B , or both

... A or C , or both .
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The rule is not intuitively obvious, but consider the following

example:

Mary is a linguist or Mary is a psychologist.
Mary is an experimenter or Mary is not a psychologist.
Therefore , Mary is a linguist or Mary is an experimenter .

Suppose that Mary is not a psychologist, then it follows from the first
premise that she is a linguist ; now , suppose that Mary is a psycholo-
gist , then it follows from the second premise that she is an experi -

menter . Mary must be either a psychologist or not a psychologist, and
so she must be either a linguist or an experimenter .

Table 2 .1 summarizes the main steps of resolution theorem -

proving , which relies on the method of reductio ad absurdum, i .e.

showing that the negation of the desired conclusion leads to a

contradiction . Unfortunately , despite the use of various heuristics to

speed up the search, the method still remains intractable : the search
space tends to grow exponentially with the number of clauses in the
premises (Moore , 1982 ) . The resolution method , however , has be -

come part of " logic programming "- the formulation of high level
programming languages in which programs consist of assertions in a

formalism closely resembling the predicate calculus (Kowalski , 1979).
Thus , the language PROLOG is based on resolution (see e.g. Clocksin

and Mellish , 1981 ) .

No psychologist would suppose that human reasoners are
equipped with the resolution rule (see also our studies of "double
disjunctions " in the next chapter). But , a psychologically more plau-
sible form of deduction has been implemented in computer programs.
It relies on the method of "natural deduction ," which provides sepa-
rate rules of inference for each connective . The programs maintain a

clear distinction between what has been proved and what their goals

are, and so they are able to construct chains of inference working

forwards from the premises and working backwards from the con -

clusion to be proved (see e.g. Reiter , 1973; Bledsoe, 1977; Pollock ,
1989). The use of forward and backward chains was pioneered in
modern times by Polya (1957) and by Newell , Shaw, and Simon
(1963); as we will see, it is part of the programming language,
PLANNER .
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Table 2 . 1

A simple example of " resolution " theorem - proving

The deduction to be evaluated :

1 . Mary is a psychologist .

2 . All psychologists have read some books .

3 . . . . Mary has read some books .

Step 1 : Translate the deduction into a reductio ad absurdum , i . e . negate the

conclusion with the aim of showing that the resultant set of propositions is
. .

InconsIstent :

1 . ( Psychologist Mary )

2 . ( For any x ) ( for some y )

( Psychologist x & book y ) - + ( Read x y )

3 . ( Not ( For some z ) ( Book z & ( Read Mary z ) ) )

Step 2 : Translate all the connectives into disjunctions , and eliminate the

quantifiers . " Any " can be deleted : its work is done by the presence of

variables . " Some " is replaced by a function ( the so - called Skolem function ) ,

e . g . " all psychologists have read some books " requires a function , f , which .

given a psychologist as its argument , returns a value consisting of some

books :

1 . ( Psychologist Mary )

2 . ( Not ( Psychologist x ) ) or ( Read x ( f x ) )

3 . ( Not ( Read Mary ( fMary ) )

Step 3 : Apply the resolution rule to any premises containing inconsistent

clauses : it is not necessary for both assertions to be disjunctions . Assertion 3

thus cancels out the second disjunct in assertion 2 to leave :

1 . ( Psychologist Mary )

2 . ( Not ( Psychologist Mary ) )

These two assertions cancel out by a further application of the resolution

rule . Whenever a set of assertions is reduced to the empty set in this way ,

they are inconsistent . The desired conclusion follows at once because its

negation had led to a reductio ad absurdum .

Fortnal Rules in Psychological Theories

Natural deduction has been advocated as the most plausible account

of mental logic by many psychologists ( e . g . Braine , 1978 ; Osherson ,

1975 ; Johnson - Laird , 1975 ; Macnamara , 1986 ) , and at least one

simulation program uses it for both forward - and backward - chaining

( Rips , 1983 ) . All of these theories posit an initial process of recover -

ing the logical fonn of the premises . Indeed , what they have in

common outweighs their differences , but we will outline three of

them to enable readers to make up their own minds .
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Johnson - Laird ( 1975 ) proposed a theory of propositional rea -

soning partly based on natural deduction . Its rules are summarized

in Table 2 . 2 along with those of the two other theories . The rule

introducing disjunctive conclusions :

A

000 A or B ( or both )

leads to deductions that , as we have remarked , throw semantic

infonnation away and thus seem unacceptable to many people . Yet ,

without this rule , it would be difficult to make the inference :

If it is frosty or it is foggy , then the game won ' t be played .

I t is frosty .

Therefore , the game won ' t be played .

Johnson - Laird therefore proposed that the rule ( and others like it ) is

an auxiliary one that can be used only to prepare the way for a pri -

mary rule , such as modus ponens . Where the procedures for exploit -

ing rules fail , then the next step , according to his theory , is to make a

hypothetical assumption and to follow up its consequences .

Braine and his colleagues have described a series of forI ) 1al

theories based on natural deduction ( see e . g . Braine , 1978 ; Braine and

Rumain , 1983 ) . At the heart of their approach are the formal rules

presented in Table 2 . 2 . They differ in format from Johnson - Laird ' s in

two ways . First , " and " and " or " can connect any number of proposi -

tions , and so , for example , the first rule in Table 2 . 2 has the following

form in their theory :

P1 , P2 . . . P n

Therefore , P1 and P2 and . . . P n .

Second , Braine avoids the need for some auxiliary rules , such as the

disjunctive rule above , by building their effects directly into the main

rules . He includes , for example , the rule :

If A or B then C

A

Therefore , C

again allowing for any number of propositions in the disjunctive

antecedent . This idea is also adopted by Sperber and Wilson ( 1986 ) .
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Table 2.2
The principal fonnal rules of inference proposed by three psychological
theories of deduction

+

+ +

+

++

+ +

+

+

+

�

Johnson-Laird Braine Rips
�

+�

Notes

" + " indicates that a rule is postulated by the relevant theory .
"A ~ B" means that a deduction from A to B is possible. Braine 's rules
interconnect any number of propositions , as we explain in the text . He
postulates four separate rules that together enable a reductio ad absurdum to
be made. johnson -Laird relies on procedures that follow up the separate
consequences of constituents in order to carry out dilemmas.

+

+

+

+

Conj unctions
A , B . . . A & B

A & B . . . A

Disj unctions
A or B , not - A . . . B

A . ' . A or B

Conditionals

If A then B , A . ' . B

If A or B then C , A , ' . C

A ~ B . ' . If A then B

Negated conjunctions
not (A & B) , A ... B

not (A & B ) 0.. not - A or not - B

A & not - B ... not (A & B )

Double negations
not not - A . 0. A

De Morgan 's laws

A & (B or C) ... (A & B) or (A & C)
Reductio ad absurdum

A ~ B & not - B . . . not - A

Dilemmas

A or B , A ~ C , B ~ C . . . C

A or B , A ~ C , B ~ D . . . C or D

Introduction of tautologies
. . . A or not - A

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
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"difficulty weights" of these steps as estimated from the data. Both
measures predicted certain results: the rated difficulty of a problem ,
the latency of response (adjusted for the time it took to read the
problem ), and the percentage of errors. Likewise , the number of
words in a problem correlated with its rated difficulty and the latency

of response .

Rips (1983) has proposed a theory of propositional reasoning,
which he has simulated in a program called ANDS (A Natural

Deduction System). The rules used by ,the program- in the form of
procedures - are summarized in Table 2 .2 . The program evaluates

given conclusions and it builds both forward - chains and backward -

chains of deduction , and therefore maintains a set of goals separate
from the assertions that it has derived . Certain rules are treated as

auxiliaries that can be used only when they are triggered by a goal , e.g.:

A , B

Therefore , A and B

which otherwise could be used ad infinitum at any point in the proof .

lfthe program can find no rule to apply during a proof , then it declares
that the argument is invalid . Rips assumes that rules of inference are

available to human reasoners on a probabilistic basis. His main method
of testing the theory has been to fit it to data obtained from subj ects

who assessed the validity of arguments . The resulting estimates of the

availability of rules yielded a reasonable fit for the data as a whole .
One surprise , however , was that the rule :

If A or B then C

A

Therefore , C

Braine, Reiser, and Rumain (1984) tested the theory by asking

subjects to evaluate given deductions. The problems concerned the
presence or absence of letters on an imaginary blackboard , e.g.:

If there is either a C or an H , then there is a P .

There is a C .

Therefore , there is a P .

The subjects' task was to judge the truth of the conclusion given the
premises. The study examined two potential indices of difficulty -
the number of steps in a deduction according to the theory , and the



Chapter 244

had a higher availability than the simple rule of modus ponens . It is

worth nothing that half of the valid deductions in his experiment

called for semantic information to be thrown away . Only one out of

these 16 problems was evaluated better than chance . Conversely , 14

of the other 16 problems , which maintained semantic information ,

were evaluated better than chance .

A major difficulty for performance theories based on formal logic

is that people are affected by the content of a deductive problem . Yet ,

formal rules ought to apply regardless of content . That is what they

are : rules that apply to the logical form of assertions , once it has been

abstracted from their content . The proponents of formal rules argue

that content exerts its influence only during the interpretation of

premises . It leads reasoners to import additional information , or to

assign a different logical form to a premise . A radical alternative ,

however , is that reasoners make use ( , f rules of inference that have a

specific content .

Content - Specific Rules : A Second Theory at the Algorithmic

Level

Content - specific rules of inference were pioneered by workers in

artificial intelligence . They were originally implemented in the pro -

gramming language PLANNER ( Hewitt , 1971 ) . It and its many de -

scendants rely on the resemblance between proofs and plans . A proof

is a series of assertions , each following from what has gone before ,

that leads to a conclusion . A plan is a series of hypothetical actions ,

each made possible by what has gone before , and leading to a goal .

Hence , a plan can be derived in much the same way as a proof . A

program written in a PLANNER - like language has a data - base con -

sisting of a set of simple assertions , such as :

Mary is a psychologist .

Paul is a linguist .

Mark is a programmer .

which can be represented in the following notation :

( Psychologist Mary )

( Linguist Paul )

( Programmer Mark )
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"Mary is a psychologist," is obviously true with respectThe assertion ,

to this data base . General assertions , such as :

All psychologists are experimenters .

are expressed , not as assertions , but as rules of inference . One way to

formulate such a rule is by a procedure :

( Consequent ( x ) ( Experimenter x )

( Goal ( Psychologist x ) ) )

which enables the program to infer the consequent that x is an

experimenter if it can satisfy the goal that x is a psychologist . If the

program has to evaluate the truth of :

Mary is an experimenter

it first searches its data base for a specific assertion to that effect . It fails

to find such an assertion in the data base above , and so it looks for a

rule with a consequent that matches with the sentence to be eval -

uated . The rule above matches and sets up the following goal :

( Goal ( Psychologist Mary ) )

This goal is satisfied by an assertion in the data base , and so the sen -

tence , " Mary is an experimenter " is satisfied too . The program con -

structs backward - chains of inference using such rules , which can even

be supplemented with specific heuristic advice about how to derive

certain conclusions .

Another way in which to formulate a content - specific rule is as

follows :

( Antecedent ( x ) ( Psychologist x )

( Assert ( x ) ( Experimenter x ) ) )

Wherever its antecedent is satisfied by an input assertion , such as :

Mary is a psychologist .

the procedure springs to life and asserts that x is an experimenter :

Mary is an experimenter .

This response has the effect of adding the further assertion to the data

base . The program can construct forward - chains of inference using

such rules .
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Content -specific rules are the basis of most expert systems,
which are computer programs that give advice on such matters as
medical diagnosis, the structure of molecules, and where to drill for
minerals. They contain a large number of conditional rules that have
been culled from human experts. From a logical standpoint , these rules
are postulates that capture a body of knowledge . The expert systems,
however , use them as rules of inference (see e.g. Michie , 1979; Duda,
Gaschnig, and Hart , 1979; Feigenbaum and McCorduck , 1984). The
rules are highly specific. For example, DENDRAL , which analyzes
mass spectrograms (Lindsay, Buchanan, Feigenbaum, and Lederberg,
1980), includes this conditional rule :

If there is a high peak at 71 atomic mass units
and there is a high peak at 43 atomic mass units
and there is a high peak at 86 atomic mass units
and there is any peak at 58 atomic mass units
then there must be an N -PROPYL -KETONE3 substructure.

(see Winston , 1984, p. 196). Most current systems have an inferential
" engine" which , by interrogating a user about a particular problem ,
navigates its way through the rules to yield a conclusion . The condi -
tional rules may be definitive or else have probabilities associated with
then , and the system may even use Bayes theorem from the proba-
bility calculus. It may build forward chains (Feigenbaum, Buchanan,
and Lederberg, 1979), backward chains (Shortliffe , 1976), or a mix -
ture of both (Waterman and Hayes-Roth , 1978).

Psychologists have also proposed that the mind uses content -
specific conditional rules to represent general knowledge (e.g. Ander -
son, 1983). They are a plausible way of drawing inferences that depend
on background assumptions. The proposal is even part of a seminal
theory of cognitive architecture in which the rules (or "productions "
as they are known ) are triggered by the current contents of working
memory (see Newell and Simon, 1972, and Newell , 1990). When a
production is triggered it may, in turn , add new infoffilation to
working memory , and in this way a chain of inferences can ensue.

A variant on content -specific rules has been proposed by Cheng
and Holyoak (1985), who argue that people are guided by "prag-
matic reasoning schemas." These are general principles that apply to
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a particular domain . For example, there is supposedly a permission
schema that includes rules of the following sort:

If action A is to be taken then precondition B must be satisfied.

The schema is intended to govern actions that occur within a frame -

work of moral conventions , and Cheng and Holyoak argue that it
and other similar schemas account for certain aspects of deductive

performance.
Content plays its most specific role in the hypothesis that reason-

ing is based on memories of particular experiences (Stanfill and Waltz ,
1986 ). Indeed , according to Riesbeck and Schank 's (1989 ) theory of

"case-based" reasoning, human thinking has nothing to do with logic .
What happens is that a problem reminds you of a previous case, and
you decide what to do on the basis of this case . These theorists allow ,

however , that when an activity has been repeated often enough , it

begins to function like a content -specific rule . The only difficulty
with this theory is that it fails to explain how people are able to make
valid deductions that do not depend on their specific experiences.

General knowledge certainly enters into everyday deductions,
but whether it is represented by schemas or productions or specific
cases is an open question. It might , after all, be represented by asser-
tions in a mental language . It might even have a distributed repre -

sentation that has no explicit symbolic structure (Rumelhart , 1989).
Structured representations , however , do appear to be needed in order

to account for reasoning about reasoning (see Johnson-Laird , 1988,
Ch . 19) .

Mental Models : A Third Theory at the Algorithmic Level

Neither formal rules nor content -specific rules appear to give com-

plete explanations of the mechanism underlying deduction . On the
one hand, the content of premises can exert a profound effect on the
conclusions that people draw, and so a uniform procedure for ex-
tracting logical form and applying formal rules to it may not account
for all aspects of performance . On the other hand , ordinary individ -

uals are able to make valid deductions that depend solely on connec -

tives and quantifiers, and so rules with a specific content would have
to rely on some (yet to be fonnulated ) account of purely logical
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Figure 2.1
The three stages of deduction according to the model theory .

competence . One way out of this dilemma is provided by a third sort

of algorithmic theory , which depends on semantic procedures .- - - -
Consider this inference :

The black ball is directly behind the cue ball . The green ball is on

the right of the cue ball , and there is a red ball between them .
Therefore , if I move so that the red ball is between me and the

black ball , the cue ball is to the left of my line of sight .

It is possible to frame rules that capture this inference (from Johnson -

Laird , 1975 ), but it seems likely that people will make it by imagining

the layout of the balls . This idea lies at the heart of the theory of

mental models . According to this theory , the process of deduction

depends on three stages of thought , which are summarized in Figure

2 .1. In the first stage, comprehension , reasoners use their knowl -

edge of the language and their general knowledge to understand the

premises : they construct an internal model of the state of affairs that

Premi ses and generel knowl edge

COMPREHENSION

Models

DESCRIPTION

Putatlve concluslon

URLIDRTION:search fo

altematiue models

falsifying conclusion

Valid conclusion



the premises describe. A deduction may also depend on perception ,
and thus on a perceptually -based model of the world (see Marr ,
1982). In the second stage, reasoners try to fonnulate a parsimonious
description of the models they have constructed. This description
should assert something that is not explicitly stated in the premises.
Where there is no such conclusion , then they respond that nothing
follows from the premises. In the third stage, reasoners search for
alternative models of the premises in which their putative conclusion
is false. If there is no such model , then the conclusion is valid . If there

is such a model , then prudent reasoners will return to the second
stage to try to discover whether there is any conclusion true in all the
models that they have so far constructed. If so, then it is necessary to
search for counterexamples to it , and so on, until the set of possible
models has been exhausted. Because the number of possible mental
models is finite for deductions that depend on quantifiers and con-
nectives, the search can in principle be exhaustive. If it is uncertain
whether there is an alternative model of the premises, then the con-
clusion can be drawn in a tentative or probabilistic way . Only in the
third stage is any essential deductive work c;arried out : the first two
stages are merely normal processes of comprehension and description .

The theory is compatible with the way in which logicians for -
mulate a semantics for a calculus. But , logical accounts depend on
assigning an infinite number of models to each proposition , and an
infinite set is far too big to fit inside anyone's head (Partee, 1979).
The psychological theory therefore assumes that people construct a
minimum of models: they try to work with just a single representa-
tive sample from the set of possible models, until they are forced to
consider alternatives.

Models form the basis of various theories of reasoning. An early
program for proving geometric theorems used diagrams of figures in
order to rule out subgoals that were false (Gelernter , 1963). Although
this idea could be used in other domains (see Bundy , 1983), there
have been few such applications in artificial intelligence . Charniak
and McDennott (1985, p. 363) speculate that the reason might be
because few domains have counterexamples in the fonn of diagrams.
Yet , as we will see, analogous structures are available for all sorts of
deduction .
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Figure 2.2

Deductions from singly-quantified premises, such as "All psy-
chologists are experimenters," can be modelled using Euler circles
(see Figure 2.2). Psychological theories have postulated such repre-
sentations (Erickson , 1974) or equivalent strings of symbols (Guyote
and Sternberg, 1981). These deductions can also be modelled using
Venn diagrams (see Figure 2.3) or equivalent strings of symbols, and
they too have been proposed as mental representations (Newell , 1981).
A uniform and more powerful principle , however , is that mental

The Euler circle representation of a syllogism.
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Figure 2.3
The Venn diagram representation of a syllogism .

models have the same structure as human conceptions of the situations they
represent (Johnson - Laird , 1983 ) . Hence , a finite set of individuals

is represented, not by a circle inscribed in Euclidean space, but by a
finite set of mental tokens . A similar notion of a " vivid " representa -

tion has been proposed by Levesque (1986) from the standpoint of
developing efficient computer programs for reasoning. But , there are
distinctions between the two sorts of representation , e.g. vivid rep -

resentations cannot represent directly either negatives or disjunctions
(see also Etherington et al., 1989). The tokens of mental models may
occur in a visual image, or they may not be directly accessible to
consciousness. What matters is, not the phenomenal experience, but
the structure of the models . This structure , which we will examine in
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Conclusion

We have completed our survey of where things stood at the start of

our research . There were - and remain - three algorithmic theories

of deduction . Despite many empirical findings , it had proved impos -

sible to make a definitive choice among the theories .

detail in the following chapters , often transcends the perceptible . It

can represent negation and disjunction .

The general theory of mental models has been successful in

accounting for patterns of performance in various sorts of reasoning

(Johnson - Laird , 1983 ) . Errors occur , according to the theory , because

people fail to consider all possible models of the premises . They

therefore fail to find counterexamples to the conclusions that they

derive from their initial models , perhaps because of the limited pro -

cessing capacity of working memory (Baddeley , 1986 ) .

The model theory has attracted considerable criticism from

adherents of formal rules . It has been accused of being unclear ,

unworkable , and unnecessary . We will defer our main reply to critics

until the final chapter , but we will make a preliminary response here

to the three main charges that the theory is empirically inadequate :

1. Mental models do not explain propositional reasoning: "No clear mental
model theory of propositional reasoning has yet been proposed" (Braine ,
Reiser , and Rumain , 1984; see also Evans, 1984, 1987; and Rips , 1986).
2. Mental models cannot account for performance in Wason's selection
task. The theory implies that people search for counterexamples, yet they
conspicuously fail to do so in the selection task (Evans, 1987). The criticism
is based on a false assumption. The theory does not postulate that the search
for counterexamples is invariably complete - far from it , as such an impecc-
able performance would be incompatible with observed errors. The theory
explains performance in the selection task.
3. Contrary to the previous criticism , Rips (1986) asserts: "Deduction -as-
simulation explains content effects, but unfortunately it does so at the cost of
being unable to explain the generality of inference ." He argues that a modus
ponens deduction is not affected by the complexity of its content , and is
readily carried out in domains for which the reasoner has had no previous
exposure and thus no model to employ . However , the notion that reasoners
cannot construct models for unfamiliar domains is false: all they need is a
knowledge of the meaning of the connectives and other logical terms that
occur in the premises. Conversely , modus ponens can be affected by its
content .
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